3.9.84 \(\int \frac {(d+e x)^3}{(c d^2+2 c d e x+c e^2 x^2)^{3/2}} \, dx\)

Optimal. Leaf size=31 \[ \frac {\sqrt {c d^2+2 c d e x+c e^2 x^2}}{c^2 e} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {643, 629} \begin {gather*} \frac {\sqrt {c d^2+2 c d e x+c e^2 x^2}}{c^2 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2),x]

[Out]

Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]/(c^2*e)

Rule 629

Int[((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d*(a + b*x + c*x^2)^(p +
 1))/(b*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 643

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^(m - 1)/c^((m - 1)/2
), Int[(d + e*x)*(a + b*x + c*x^2)^(p + (m - 1)/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c,
 0] &&  !IntegerQ[p] && EqQ[2*c*d - b*e, 0] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \frac {(d+e x)^3}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx &=\frac {\int \frac {d+e x}{\sqrt {c d^2+2 c d e x+c e^2 x^2}} \, dx}{c}\\ &=\frac {\sqrt {c d^2+2 c d e x+c e^2 x^2}}{c^2 e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 22, normalized size = 0.71 \begin {gather*} \frac {x (d+e x)^3}{\left (c (d+e x)^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2),x]

[Out]

(x*(d + e*x)^3)/(c*(d + e*x)^2)^(3/2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.04, size = 20, normalized size = 0.65 \begin {gather*} \frac {\sqrt {c (d+e x)^2}}{c^2 e} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(d + e*x)^3/(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2),x]

[Out]

Sqrt[c*(d + e*x)^2]/(c^2*e)

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 38, normalized size = 1.23 \begin {gather*} \frac {\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} x}{c^{2} e x + c^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="fricas")

[Out]

sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*x/(c^2*e*x + c^2*d)

________________________________________________________________________________________

giac [A]  time = 0.63, size = 53, normalized size = 1.71 \begin {gather*} \frac {2 \, C_{0} d e^{\left (-1\right )} + {\left (2 \, C_{0} + \frac {x e}{c}\right )} x - \frac {d^{2} e^{\left (-1\right )}}{c}}{\sqrt {c x^{2} e^{2} + 2 \, c d x e + c d^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="giac")

[Out]

(2*C_0*d*e^(-1) + (2*C_0 + x*e/c)*x - d^2*e^(-1)/c)/sqrt(c*x^2*e^2 + 2*c*d*x*e + c*d^2)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 32, normalized size = 1.03 \begin {gather*} \frac {\left (e x +d \right )^{3} x}{\left (c \,e^{2} x^{2}+2 c d e x +c \,d^{2}\right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x)

[Out]

1/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)*(e*x+d)^3*x

________________________________________________________________________________________

maxima [B]  time = 1.45, size = 64, normalized size = 2.06 \begin {gather*} \frac {e x^{2}}{\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} c} - \frac {d^{2}}{\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}} c e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="maxima")

[Out]

e*x^2/(sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*c) - d^2/(sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)*c*e)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\left (d+e\,x\right )}^3}{{\left (c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^3/(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(3/2),x)

[Out]

int((d + e*x)^3/(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(3/2), x)

________________________________________________________________________________________

sympy [A]  time = 0.80, size = 42, normalized size = 1.35 \begin {gather*} \begin {cases} \frac {\sqrt {c d^{2} + 2 c d e x + c e^{2} x^{2}}}{c^{2} e} & \text {for}\: e \neq 0 \\\frac {d^{3} x}{\left (c d^{2}\right )^{\frac {3}{2}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3/(c*e**2*x**2+2*c*d*e*x+c*d**2)**(3/2),x)

[Out]

Piecewise((sqrt(c*d**2 + 2*c*d*e*x + c*e**2*x**2)/(c**2*e), Ne(e, 0)), (d**3*x/(c*d**2)**(3/2), True))

________________________________________________________________________________________